skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karypis, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Memory-based Temporal Graph Neural Networks are powerful tools in dynamic graph representation learning and have demonstrated superior performance in many real-world applications. However, their node memory favors smaller batch sizes to capture more dependencies in graph events and needs to be maintained synchronously across all trainers. As a result, existing frameworks suffer from accuracy loss when scaling to multiple GPUs. Even worse, the tremendous overhead of synchronizing the node memory makes it impractical to deploy the solution in GPU clusters. In this work, we propose DistTGL — an efficient and scalable solution to train memory-based TGNNs on distributed GPU clusters. DistTGL has three improvements over existing solutions: an enhanced TGNN model, a novel training algorithm, and an optimized system. In experiments, DistTGL achieves near-linear convergence speedup, outperforming the state-of-the-art single-machine method by 14.5% in accuracy and 10.17× in training throughput. 
    more » « less
  2. For decades, atomistic modeling has played a crucial role in predicting the behavior of materials in numerous fields ranging from nanotechnology to drug discovery. The most accurate methods in this domain are rooted in first-principles quantum mechanical calculations such as density functional theory (DFT). Because these methods have remained computationally prohibitive, practitioners have traditionally focused on defining physically motivated closed-form expressions known as empirical interatomic potentials (EIPs) that approximately model the interactions between atoms in materials. In recent years, neural network (NN)-based potentials trained on quantum mechanical (DFT-labeled) data have emerged as a more accurate alternative to conventional EIPs. However, the generalizability of these models relies heavily on the amount of labeled training data, which is often still insufficient to generate models suitable for general-purpose applications. In this paper, we propose two generic strategies that take advantage of unlabeled training instances to inject domain knowledge from conventional EIPs to NNs in order to increase their generalizability. The first strategy, based on weakly supervised learning, trains an auxiliary classifier on EIPs and selects the best-performing EIP to generate energies to supplement the ground-truth DFT energies in training the NN. The second strategy, based on transfer learning, first pretrains the NN on a large set of easily obtainable EIP energies, and then fine-tunes it on ground-truth DFT energies. Experimental results on three benchmark datasets demonstrate that the first strategy improves baseline NN performance by 5% to 51% while the second improves baseline performance by up to 55%. Combining them further boosts performance. 
    more » « less
  3. null (Ed.)
    This work proposes a new unsupervised (or self-supervised) node representation learning method that aims to leverage the coarse-grain information that is available in most graphs. This extends previous attempts that only leverage fine-grain information (similarities within local neighborhoods) or global graph information (similarities across all nodes). Intuitively, the proposed method identifies nodes that belong to the same clusters and maximizes their mutual information. Thus, coarse-grain (cluster-level) similarities that are shared between nodes are preserved in their representations. The core components of the proposed method are (i) a jointly optimized clustering of nodes during learning and (ii) an Infomax objective term that preserves the mutual information among nodes of the same clusters. Our method is able to outperform competing state-of-art methods in various downstream tasks, such as node classification, link prediction, and node clustering. Experiments show that the average gain is between 0.2% and 6.1%, over the best competing approach, over all tasks. Our code is publicly available at: https://github.com/cmavro/Graph-InfoClust-GIC. 
    more » « less
  4. null (Ed.)
    Item-based models are among the most popular collaborative filtering approaches for building recommender systems. Random walks can provide a powerful tool for harvesting the rich network of interactions captured within these models. They can exploit indirect relations between the items, mitigate the effects of sparsity, ensure wider itemspace coverage, as well as increase the diversity of recommendation lists. Their potential however, can be hindered by the tendency of the walks to rapidly concentrate towards the central nodes of the graph, thereby significantly restricting the range of K -step distributions that can be exploited for personalized recommendations. In this work, we introduce RecWalk ; a novel random walk-based method that leverages the spectral properties of nearly uncoupled Markov chains to provably lift this limitation and prolong the influence of users’ past preferences on the successive steps of the walk—thereby allowing the walker to explore the underlying network more fruitfully. A comprehensive set of experiments on real-world datasets verify the theoretically predicted properties of the proposed approach and indicate that they are directly linked to significant improvements in top- n recommendation accuracy. They also highlight RecWalk’s potential in providing a framework for boosting the performance of item-based models. RecWalk achieves state-of-the-art top- n recommendation quality outperforming several competing approaches, including recently proposed methods that rely on deep neural networks. 
    more » « less